G = C23.S4 order 192 = 26·3
non-abelian, soluble, monomial
Aliases:
C23.4S4,
2+ 1+4.2S3,
C2.4(C22⋊S4),
C23⋊A4.2C2,
SmallGroup(192,1491)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.S4
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f3=1, g2=c, ab=ba, eae=ac=ca, ad=da, faf-1=gag-1=b, dbd=ebe=bc=cb, fbf-1=abc, gbg-1=a, cd=dc, ce=ec, cf=fc, cg=gc, fdf-1=gdg-1=de=ed, fef-1=d, eg=ge, gfg-1=f-1 >
Subgroups: 357 in 71 conjugacy classes, 8 normal (5 characteristic)
C1, C2, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C23, C23, Dic3, A4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C4○D4, SL2(𝔽3), C2×A4, C23⋊C4, C22.D4, 2+ 1+4, A4⋊C4, C23.7D4, C23⋊A4, C23.S4
Quotients: C1, C2, S3, S4, C22⋊S4, C23.S4
Character table of C23.S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | |
size | 1 | 1 | 6 | 6 | 6 | 32 | 12 | 12 | 12 | 24 | 24 | 24 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ4 | 3 | 3 | 3 | -1 | -1 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | orthogonal lifted from S4 |
ρ5 | 3 | 3 | 3 | -1 | -1 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | 0 | orthogonal lifted from S4 |
ρ6 | 3 | 3 | -1 | -1 | 3 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | orthogonal lifted from S4 |
ρ7 | 3 | 3 | -1 | -1 | 3 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 0 | orthogonal lifted from S4 |
ρ8 | 3 | 3 | -1 | 3 | -1 | 0 | -1 | 1 | 1 | -1 | 1 | -1 | 0 | orthogonal lifted from S4 |
ρ9 | 3 | 3 | -1 | 3 | -1 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 0 | orthogonal lifted from S4 |
ρ10 | 4 | -4 | 0 | 0 | 0 | 1 | 0 | -2i | 2i | 0 | 0 | 0 | -1 | complex faithful |
ρ11 | 4 | -4 | 0 | 0 | 0 | 1 | 0 | 2i | -2i | 0 | 0 | 0 | -1 | complex faithful |
ρ12 | 6 | 6 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C22⋊S4 |
ρ13 | 8 | -8 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | symplectic faithful, Schur index 2 |
Permutation representations of C23.S4
►On 16 points - transitive group
16T441Generators in S
16
(1 8)(2 16)(3 6)(4 14)(5 12)(7 10)(9 13)(11 15)
(1 15)(2 5)(3 13)(4 7)(6 9)(8 11)(10 14)(12 16)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 8)(2 16)(3 6)(4 14)(5 10)(7 12)(9 15)(11 13)
(1 9)(2 10)(3 11)(4 12)(5 16)(6 13)(7 14)(8 15)
(5 16 10)(6 11 13)(7 14 12)(8 9 15)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,8)(2,16)(3,6)(4,14)(5,12)(7,10)(9,13)(11,15), (1,15)(2,5)(3,13)(4,7)(6,9)(8,11)(10,14)(12,16), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,8)(2,16)(3,6)(4,14)(5,10)(7,12)(9,15)(11,13), (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15), (5,16,10)(6,11,13)(7,14,12)(8,9,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,8)(2,16)(3,6)(4,14)(5,12)(7,10)(9,13)(11,15), (1,15)(2,5)(3,13)(4,7)(6,9)(8,11)(10,14)(12,16), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,8)(2,16)(3,6)(4,14)(5,10)(7,12)(9,15)(11,13), (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15), (5,16,10)(6,11,13)(7,14,12)(8,9,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,8),(2,16),(3,6),(4,14),(5,12),(7,10),(9,13),(11,15)], [(1,15),(2,5),(3,13),(4,7),(6,9),(8,11),(10,14),(12,16)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,8),(2,16),(3,6),(4,14),(5,10),(7,12),(9,15),(11,13)], [(1,9),(2,10),(3,11),(4,12),(5,16),(6,13),(7,14),(8,15)], [(5,16,10),(6,11,13),(7,14,12),(8,9,15)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,441);
Matrix representation of C23.S4 ►in GL4(𝔽5) generated by
G:=sub<GL(4,GF(5))| [1,0,1,4,1,4,1,0,0,0,0,1,0,0,1,0],[1,3,1,2,0,3,4,3,2,2,4,0,4,3,4,2],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,1,3,0,0,1,0,0,4,4,3,0,3,1,3,4],[1,0,0,0,2,3,2,0,1,1,2,0,3,1,3,4],[0,0,0,1,4,0,0,0,3,2,1,4,0,4,0,0],[3,0,0,0,0,0,0,2,0,1,3,1,0,2,0,0] >;
C23.S4 in GAP, Magma, Sage, TeX
C_2^3.S_4
% in TeX
G:=Group("C2^3.S4");
// GroupNames label
G:=SmallGroup(192,1491);
// by ID
G=gap.SmallGroup(192,1491);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,57,254,135,171,262,1684,1271,718,1013,516,530]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^3=1,g^2=c,a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,f*a*f^-1=g*a*g^-1=b,d*b*d=e*b*e=b*c=c*b,f*b*f^-1=a*b*c,g*b*g^-1=a,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=g*d*g^-1=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g^-1=f^-1>;
// generators/relations
Export
Character table of C23.S4 in TeX